



## SMF2: Global model of the F2 layer peak height based on satellite data

Alexander Karpachev\*, Valentin Shubin\*, <u>Konstantin Tsybulya</u>\*\*

\*Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Moscow \*\*Institute of Applied Geophysics, Moscow

**International Reference Ionosphere (IRI)** 

Workshop 2013 "IRI and GNSS"





**Olsztyn, June 24 - 28, 2013** 

## Approach

# IRI: $h_m F2 = Approximation(M3000, f_o F2/f_o E, R_z)$ SMF2: $h_m F2 = SHA(\phi, \lambda) * Fourier(t) * Corr(F_{10.7A})$

Based on a set of 149 x 24 x 12 = 42912 coefficients (for low and high activity)

### Data set

2 800 000 COSMIC profiles (http://www.cosmic.ucar.edu)
100 000 GRACE profiles (http://op.gfz-potsdam.de/champ/)
300 000 CHAMP profiles (http://op.gfz-potsdam.de/champ/)
200 000 Interkosmos-19 profiles

For high solar activity ~60 Digisondes stations were added (http://ulcar.uml.edu)

# Low solar activity ( $F_{10.7} \le 80$ )

- Mainly COSMIC, also some CHAMP and GRACE data
- GPS radio occultation data
- A form of Abel transform is used to derive profiles and  $h_m F2$
- Ready-for-use profiles were downloaded

### Data global distribution

Digisondes



### Typical Problems with Occultation Profiles



# High solar activity ( $F_{10.7A} > 140$ )

- Mainly Interkosmos-19 data (1979—1981)
- Top-side ionograms
- Close-to-uniform global coverage
- Restored from tapes and prints
- Manually scaled
- A variation of Jackson algorithm is used to derive profiles and  $h_m F2$
- In addition some CHAMP, GRACE and Digisonde data

## Typical Problems with IK-19 data

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1

2 3

5 6 7 8

4

Ê

Virtual distance,

Strong radio signal attenuation near critical frequency fzs fos fxs 200 z 400 Ó Ĕ 600 Virtual distance, 800 1000 Earth reflections 1200 1400 1600 foF2 fxF2 1800 2000 10 11 12 13 14 15 0 2 3 4 5 6 9 16 Frequency, MHz

#### Strong F-spread



*Ionogram with F3-layer* 

fxF2

12 13

14 15 16



Frequency, MHz

9 10 11



Karpachev et al., 2010, 2011, 2013, Geomagnetism and Aeronomy

Model Construction

### Method of the model construction

Modeling of the spatial dependencies is based on expansion of these dependencies in series by a system of orthogonal functions [Chernyshov, Vasilyeva, 1973]. The  $h_mF2$  dependency on latitude  $\phi$  and longitude  $\pi$  in some fixed moment of time is expanded as a series:

$$F(\phi, \pi) = \sum_{m=0}^{M} \sum_{n=m}^{N} \left[ g_n^m \cos m\pi + h_n^m \sin m\pi \right] \cdot P_n^m (\cos \vartheta), \tag{1}$$

where  $\vartheta = 90^{\circ} - \varphi$ ,  $g_n^m$  and  $h_n^m$  are expansion coefficients, and  $P_n^m(\cos\vartheta)$  are associated **Legendre functions**. The coefficients in (1) are determined with the least square method. The series (1) could be presented in a shorter form:

$$F(\phi, \pi) = \sum_{k=0}^{K} D_k \cdot G_k(\phi, \pi), \quad k = 0, 1, 2..., K,$$
(2)

where  $D_k$  are complex expansion coefficients and  $G_k(q,n)$  are spherical harmonics. The number of the coefficients is determined as  $K = m \cdot (2n - m + 1) + n + 1$ . To determine coefficients in (2) we used Gram-Schmidt orthonormalising, as in [*Chernyshov, Vasilyeva*, 1973]. The approximation was considered to be optimal when the standard deviation *SD* was minimized for the given month and UT hour:

$$SD = \sqrt{\frac{1}{n-1} \left[ \sum_{i=1}^{n} (h_m F 2 - h_m F 2_{\text{mod}})^2 - \frac{1}{n} \left( \sum_{i=1}^{n} (h_m F 2 - h_m F 2_{\text{mod}}) \right)^2 \right]},$$
(3)

We chose as optimal M = 8 (longitudinal)  $\mu N = 12$  (latitudinal) numbers. Thus, we need 149 coefficients for one month and UT hour.

For the diurnal interpolation we have used a Fourier decomposition with 3 harmonics:

$$F(t) = \sum_{i=0}^{3} \left[ a_i \cos(i\frac{2p}{T}t) + b_i \sin(i\frac{2p}{T}t) \right],$$
(4)

where  $a_i$  and  $b_i$  are found from  $h_m F2$  diurnal dependency with period T = 24 hours with the help of Gram–Schmidt process.

### Model construction

#### MODIP



Latitudinal variations, N=12

40

60

24

### $N_m F2$ and $h_m F2$ dependence on solar activity



 $F_{10.7A}$  is daily  $F_{10.7}$  averaged for 3 rotations of the Sun

 $F_{10.7p}$  (proxy) =( $F_{10.7}$ + $F_{10.7A}$ ) / 2

Checking, Testing and Validation of the Model

### SMF2 and IRI comparison: Low solar activity



## Longitudinal and Latitudinal variations





### Latitudinal variations: High solar activity





### SMF2-IRI Comparison (June, High and Low Solar Activity)

| UT,<br>h | Ν   | SMF2      |             |          |           | IRI-2012   |          |         | SMF2 |          |            | IRI-2012 |          |            |          |
|----------|-----|-----------|-------------|----------|-----------|------------|----------|---------|------|----------|------------|----------|----------|------------|----------|
|          |     | SD,<br>km | SCAT,<br>km | MRD<br>% | SD,<br>km | SCAT<br>km | MRD<br>% | UT<br>h | Ν    | SD<br>km | SCAT<br>km | MRD<br>% | SD<br>km | SCAT<br>km | MRD<br>% |
| 00       | 822 | 11.83     | 11.82       | 3        | 23.96     | 32.76      | 11       | 04      | 164  | 21.91    | 21.84      | 5        | 31.34    | 32.54      | 7        |
| 01       | 827 | 11.34     | 11.33       | 3        | 22.97     | 30.25      | 10       | 05      | 153  | 22.94    | 22.89      | 5        | 37.53    | 41.14      | 9        |
| 02       | 830 | 10.78     | 10.78       | 3        | 23.04     | 29.49      | 10       | 06      | 164  | 19.78    | 19.74      | 4        | 33.35    | 33.74      | 8        |
| 03       | 831 | 13.26     | 13.25       | 3        | 23.14     | 28.90      | 9        | 07      | 156  | 21.89    | 21.85      | 5        | 35.50    | 37.46      | 8        |
| 04       | 825 | 11.74     | 11.73       | 3        | 22.23     | 27.90      | 9        | 08      | 126  | 17.98    | 18.00      | 4        | 31.72    | 33.45      | 7        |
| 05       | 829 | 12.68     | 12.67       | 3        | 21.59     | 26.84      | 8        | 09      | 119  | 18.42    | 18.35      | 4        | 37.18    | 38.18      | 8        |
| 06       | 830 | 12.00     | 11.99       | 3        | 22.80     | 29.00      | 9        | 10      | 101  | 19.89    | 19.81      | 4        | 40.03    | 44.58      | 8        |
| 07       | 832 | 11.38     | 11.38       | 3        | 22.74     | 29.84      | 10       | 11      | 111  | 16.98    | 16.97      | 4        | 49.25    | 50.90      | 10       |
| 08       | 832 | 11.42     | 11.41       | 3        | 23.44     | 31.39      | 10       | 12      | 122  | 20.09    | 20.03      | 4        | 49.90    | 56.95      | 9        |
| 09       | 839 | 10.41     | 10.40       | 3        | 23.53     | 32.12      | 11       | 13      | 118  | 19.92    | 19.90      | 4        | 39.13    | 39.83      | 9        |
| 10       | 829 | 11.61     | 11.61       | 3        | 25.64     | 34.55      | 12       | 14      | 124  | 17.84    | 17.77      | 4        | 35.83    | 35.72      | 9        |
| 11       | 833 | 11.50     | 11.49       | 3        | 24.75     | 34.67      | 12       | 15      | 111  | 19.05    | 19.04      | 5        | 39.44    | 39.39      | 9        |
| 12       | 813 | 12.71     | 12.71       | 3        | 25.51     | 34.59      | 12       | 16      | 120  | 25.72    | 25.75      | 7        | 44.87    | 44.69      | 12       |
| 13       | 829 | 11.76     | 11.76       | 3        | 23.96     | 33.19      | 11       | 17      | 93   | 21.40    | 21.34      | 5        | 36.44    | 36.27      | 8        |
| 14       | 830 | 9.87      | 9.87        | 3        | 23.99     | 33.20      | 11       | 18      | 99   | 25.85    | 25.91      | 5        | 43.26    | 44.55      | 9        |
| 15       | 826 | 10.41     | 10.40       | 3        | 25.53     | 33.00      | 11       | 19      | 89   | 21.59    | 21.56      | 5        | 44.00    | 43.90      | 10       |
| 16       | 823 | 10.40     | 10.39       | 3        | 25.46     | 34.11      | 11       | 20      | 111  | 17.63    | 17.59      | 4        | 39.08    | 38.91      | 11       |
| 17       | 821 | 12.08     | 12.08       | 3        | 25.60     | 33.72      | 11       | 21      | 174  | 19.71    | 19.66      | 5        | 44.42    | 44.30      | 11       |

### **Technical implementation**

- ~400 lines of FORTRAN code
- Compiled for Windows and Linux OS
- Open and free for distribution (in near future)
- Command-line interface
- C++ Windows graphical interface
- Web interface (http://space-weather.ru)

## Windows Graphical Interface



## Conclusions

- A global median  $h_m F2$  model based on the vast satellite database is created, with relative deviations (*MRD*) for all months 2–3 times less than in IRI
- The approach looks promising
- More data necessary for high solar activity
- A problem of correct validation is noted

### Comparison between COSMIC and ionosondes



